I. **Title:** Towards predicting plague epizootics: Understanding free-living amoeba as an inter-epizootic host for sylvatic plague

Rationale: *Yersinia pestis*, the causative agent of bubonic plague, is transmitted by flea bite. The plague is difficult to eradicate because it is widespread in wild rodents and their associated fleas, and has a continuing foci of endemicity during quiescence. Since its introduction into North America at the turn of the 20th century, plague has caused the precipitous decline of wild rodent species e.g. prairie dogs and brought their predator, the black-footed ferret, to the brink of extinction. Natural sylvatic cycles of plague are composed of two phases: i) a prolonged quiescent phase during which *Y. pestis* persists undetected in an unknown reservoir, and ii) unpredictable re-emergence of an epizootic phase characterized by rampant death of susceptible hosts (prairie dogs, the endangered black-footed ferret) and amplified levels of disease that heighten risk of transmission to other animals (e.g. mountain lions, domestic cats and dogs). Understanding how plague persists during inter-epizootic periods and then re-emerges into epizootics is paramount to improving approaches to understand risk and predict and prevent epizootic events and large scale animal death.

Hypothesis: We hypothesize that bactiverous free-living soil amoeba (FLA) serve as an alternate host and soil reservoir for *Y. pestis* during quiescent inter-epizootic plague cycles that supports reactivation of plague epizootics.

Study Design: In this study we propose to make an experimental investigation into whether FLA that are isolated from an active plague foci can support long term survival and/or replication of *Y. pestis* in controlled laboratory culture. This will be followed by determining if such an interaction is supported in a rodent burrow soil simulating environment under conditions that are consistent with seasonal epizootic and inter-epizootic plague cycles.

Preliminary Data: Our preliminary studies provide the first evidence for replication and prolonged survival of *Y. pestis* within a laboratory strain of the FLA, *Acanthamoeba castellanii*. We have subsequently isolated and identified FLA species, including *Acanthamoeba* spp, from black-tailed prairie dog burrow soils of a plague foci in the Cathy Fromme prairie in Colorado. This prairie dog community has recently experienced a die-off from plague. These data support that colocalization of *Y. pestis* and FLA in prairie dog burrows is probable, and warrants further investigation of this interaction.

Expected Results: We anticipate developing essential method and expertise to detect the *Y. pestis*-amoeba interaction in endemic plague foci. As well, this study should advance understanding of how amoeba act as a reservoir host for *Y. pestis* during quiescence. This work has the potential to initiate pioneering efforts into detecting the *Y. pestis*-amoeba interaction in plague endemic areas, and developing strategies to predict plague recrudescence and epizootics.

Budget and Timeline: During Year One the ability of amoeba from plague endemic areas to support long term survival and and/or replication as outlined in Aim 1, will be performed. Concurrently, optimization of experiments in Aim 2 will be undertaken. In Year Two final investigation into the dynamics of bacterial survival in amoeba in a burrow soil simulating environment and manuscript preparation and submission will be accomplished. Funding $10,000 per year over two years is sought.

Potential Impact for Animal Health: This research aims to discover the mechanisms that allow *Y. pestis* inter-epizootic persistence and drive its re-emergence. This is especially significant as current bio-surveillance methods are focused on serology testing in wild rodents or bacterial culturing from fleas that often prove unsuccessful at detecting plague even immediately prior to epizootic events. Knowledge of *Y. pestis* survival in plague foci endemic FLA will allow specific detection of *Y. pestis* in plague foci. The approach of predicting a plague outbreak, will allow preemptive measures to be implemented (e.g insecticide spraying to kill fleas in rodent burrows prior to reactivation of an epizootic; insecticide use is usually only undertaken when rodent deaths are observed as indication of the presence of disease). Pre-emptive measures can prevent large scale prairie dog and back-footed ferret die-off and death in the first place. As such the research is consistent with the Morris Animal Foundation funding criteria for relevant research.
III. Name, Institution and email address

Principal Investigator: Viveka Vadyvaloo, PhD
Assistant Professor

Co-Investigator (graduate student): Javier Benavides-Montaño, DVM

Technician: To be determined
1. **Specific, testable Hypothesis and Objectives**

Yersinia pestis, the causative agent of sylvatic plague, is transmitted by flea bite. Natural sylvatic cycles of the plague are composed of two phases: 1] a prolonged quiescent phase during which *Y. pestis* persists undetected in an unknown reservoir, and 2] unpredictable re-emergence of an epizootic phase characterized by rampant death of susceptible animal hosts and heightened risk of transmission to other animal species including domestic cats and dogs. Understanding how plague persists during inter-epizootic periods and then re-emerges into epizootics is needed to improve approaches to understand risk and reduce epizootic transmission. Identification of the reservoir that supports long-term quiescent persistence of *Y. pestis* however remains enigmatic. Epidemiologists/ecologists have postulated that bacterivorous soil FLA phagocytose *Y. pestis* and serve as a soil reservoir for this pathogen, similar to what has been demonstrated for other bacterial pathogens, e.g. *Legionella pneumophila* (1-3). This model posits that, in the first step, *Y. pestis* enters and survives, and remains protected within the vegetative active trophozoite amoeba forms in the soil. In the next step which leads to recrudescence of the epizootic cycle, *Y. pestis* infected amoeba can act as a vehicle for re-infection of a foraging rodent or larval flea in the soil (Fig 1). As proof-of-concept our preliminary studies provide the first evidence for replication and prolonged survival of *Y. pestis* as residents of vacuoles in amoeba trophozoite forms of the soil FLA, *Acanthamoeba castellanii*. The next logical steps in defining if FLA can serve as natural reservoir hosts of quiescent *Y. pestis*, is to understand the natural biological context of the *Y. pestis*-amoeba interaction.

Our proposal aims to address this knowledge gap by determining if FLA present in burrows of black-tailed prairie dogs that have recently experienced plague epizootics, are capable of supporting long term survival and replication of *Y. pestis*.

Specific Aim 1: Determine if FLA present in burrows of black-tailed prairie dogs that have recently experienced plague epizootics, are capable of supporting long term survival and replication of *Y. pestis*.

Specific Aim 2: Determine if the ability of *Y. pestis* to survive long-term and/or replicate in amoeba can be recapitulated in a simulated burrow soil environment. This simulated environment should mimic the environmental conditions during epizootics or the inter-epizootic stage. Thus far we have shown experimentally that under favorable axenic laboratory medium culture conditions, *Y. pestis* has survival and replication of *Y. pestis*. Abundant and diverse FLA that can serve as reservoirs for bacterial pathogens have been documented in areas endemic for their associated diseases e.g. *L. pneumophila* (2, 3) and *Mycobacterium ulcerans* (4). To this end, we have cultivated viable FLA, including *Acanthamoeba* spp. from soil collected from burrows of prairie dogs that have recently experienced a die-off from plague. A quantitative determination of long-term survival and replication of *Y. pestis* in trophozoites will be achieved for the different FLA species. Defining the level of *Y. pestis* surviving in trophozoites can be used to establish the threshold for detection of infected amoeba in rodent burrow soils of endemic plague foci.

![Fig. 1. Model for how amoeba serve as an alternate host reservoir of *Y. pestis* during enzootic plague periods](image-url)
the ability to survive and replicate in amoeba (Fig 2). This is the first demonstration that Y. pestis is able to evade digestion and survive for a prolonged period of time in bactiverous amoeba. However it is not known if such an interaction is supported in a natural soil environment.

2. Justification, Significance and Literature Review

Impact of plague on wild rodent species and the endangered black-footed ferret. Since the introduction of plague to North America at the turn of the 20th century, Y. pestis has established itself in endemic wild rodent populations (5). This has led to the precipitous decline of particularly susceptible endemic rodent species e.g. prairie dogs (Cynomys spp.). The prairie dog predator, and only endemic US ferret population, the black-footed ferret (Mustela nigripes), has also been brought to the brink of extinction due to plague. To preserve the endangered black-footed ferret, a captive-breeding program aimed at latter reintroduction of this species into viable prairie dog habitat has been ongoing (6). A successful full recovery of the species however has yet to be achieved, and continues to be a challenge due to continued plague outbreaks in these areas. Amoeba as an inter-epizootic reservoir host for Y. pestis: Y. pestis, the etiological agent of plague has arisen as a clonal variant of Yersinia pseudotuberculosis, which can survive for long periods in soil (7), while Y. pestis cannot. Comparative genomics between Y. pestis and Y. pseudotuberculosis (7) has revealed that the Y. pestis genome has undergone genomic decay that has resulted in degradation of several metabolic pathways. This is believed to account for its host (flea or rodent) requirement for propagation. Beyond these two host environments however, there has been minimal evidence for Y. pestis to transmit or persist in other life stages. This is consistent with the long-standing inter-epizootic host persistence theory for Y. pestis, which postulates that plague is maintained naturally in infected fleas feeding on a heterogeneous population of susceptible and relatively resistant hosts. This model does not however address the following conundrums that collectively suggest an additional environmental maintenance reservoir for Y. pestis. These are that: (i) bacteremia levels of relatively resistant hosts are low and insufficient for flea acquisition of Y. pestis from the bloodmeal to perpetuate the flea–rodent transmission cycle (8), (ii) seldom are infected fleas or seropositive rodents recovered after surveillance of endemic plague foci (9), (iii) re-emergence and epizootics are infrequent and can sometimes occur >50 years or more, beyond the lifespan of fleas and hosts, (iv) ecological modeling studies show that susceptible burrow rodent metapopulations have low probability of supporting plague quiescence and re-emergence to produce epizootics at regular intervals (10). Alternately, a soil reservoir for maintenance of Y. pestis during inter-epizootic periods has also been hypothesized, and under experimental conditions that assume Y. pestis is free-living and metabolically active, persistence of Y. pestis in soil has been demonstrated, but only over short periods of time (9, 11-13). This fails to explain limited detection of the organism in soil during inter-epizootic periods at plague foci. Why amoeba? Nevertheless, the survival of Y. pestis inside an alternate host, like bactiverous soil

![Fig. 2. Survival and replication of Y. pestis strains in trophozoites of A. castellanii at epizootic temperature of 25°C (2h, 24h and 1 week) and inter-epizootic temperature of 4°C (1 week). Error bars represent mean±SD of at least 3 independent biological replicates. Statistical significance from One Way ANOVA analysis followed by a post Tukey’s test is represented by *P<0.05, **P<0.01, ***P<0.001 Y. pestis strains are white bars: KIM5; grey bars:KIM6+; blue bars: phoP mutant. nd= not detected.](image-url)
FLA, could simultaneously explain the existence of a soil reservoir, and satisfy a host requirement for Y. pestis and the ability to persist and maintain plague cycles. Survival of several bacterial pathogens, including Legionella pneumophila (1), Francisella tularensis (14), and Mycobacterium avium (15), has been mechanistically characterized within both the metabolically active trophozoite and dormant cyst forms of the host-like soil FLA Acanthamoeba spp. These bacteria are able to survive and are protected from the environment within amoeba (16, 17). To evade being digested by amoeba, similar mechanisms as those used to resist digestion in mammalian host immune cells (e.g. macrophages) are often used by pathogenic bacteria (18). One example, is that of Legionella pneumophila, the bacterial agent of a pneumatic infection called Legionnaire’s disease that persists in aquatic systems in environmental FLA (18). These bacteria reside in phagosomes and evade phagocytic destruction by deploying bacterial effectors secreted from the Dot/Icm secretion system in both amoeba and macrophages (18). L. pneumophila demonstrates enhanced virulence following intracellular persistence in amoeba (1, 19), and intranasal infection of mice with L. pneumophila-containing amoeba leads to development of Legionnaire’s disease (2, 3).

The prairie burrow environment is conducive to an amoeba: Y. pestis interaction. Black-tailed prairie dogs, Cynomys ludovicianus, are ground dwelling rodents that live in large social communities connected by extensive tunnels and burrows (called towns) in the short grass prairie plains in Northern Colorado. These rodents epitomize the sporadic nature of plague because they experience extinctions from plague epizootics frequently during warmer and wetter climatic conditions as opposed to absence of plague during drought conditions (20, 21). During these epizootics the microclimate maintained in the prairie dog burrow is conducive to maintaining amoeba in their trophozoite form e.g. moist soil (22, 23), high organic nutritional content maintained by plant material that rodents feed on, rodent feces, and decaying carcasses of rodents that have succumbed to plague, high bacterial content as a nutritional source for bactiverous amoeba (21, 23). Consistent with this, Acanthamoeba polyphaga FLA species is commonly present in soils of the Central experimental station short grass prairie where black-tailed prairie dog populations have often become extinct from plague (15, 24, 25). A. polyphaga acts as an environmental host to various pathogens (26, 27). Based on these factors a model for the survival and recrudescence of Y. pestis from an amoeba host has been envisaged. In this model Y. pestis enters and survives in vegetative active trophozoite amoeba forms during cooler quiescent periods. In the second step, during favorable warmer and wetter environmental conditions infected trophozoites will be acquired by flea or rodents resulting in reactivation of the epizootic disease cycle (Fig 1).

3. Preliminary data

To address this model we quantified the intracellular survival of bacteria after allowing bacteria to be phagocytosed for an hour and then killing of extracellular/unphagocytosed bacteria with gentamycin. Bacterial survival in trophozoites is then assessed in a nutritive axenic culture medium, PYG, which supports continued metabolic activity in trophozoites. Our preliminary studies consequently provide the first quantitative evidence for entry, prolonged survival and replication of Y. pestis within trophozoites (Fig 2) of A. castellanii. We used a strain that contained a mutation in PhoP which is a factor that is required for Y. pestis to enter and survive in macrophages (Fig 2) (28, 29). Similar to its role in macrophages, PhoP appears to be required for entry in amoeba. This data is in keeping with the prevailing paradigm that bacteria use conserved mechanisms to survive both in amoeba and macrophages (18, 30). Consistent with our quantitative data, electron microscopy (EM) shows that intact Y. pestis occurs in phagosomes of A. castellanii (Fig 2C). A previous study has observed Y. pestis within the FLA, Hartmanella rhysodes (31). These findings support our model and identifies FLA as an alternate host (besides rodents and fleas) that can support long-term survival and replication of Y. pestis.
Most approaches in plague research are aimed towards development of vaccine strategies to prevent plague. Only a few studies focus on plague surveillance and predicting re-emergence as a means to preventing the disease. Plague surveillance in endemic areas is challenging based on the difficulty of detecting the pathogen in the environment during inter-epizootic cycles (32). Indeed a lack of detection of \textit{Y. pestis} in the soil in endemic areas during inter-epizootic periods may be related to the bacteria surviving within an amoeba host at low levels, rather than freely in the soil. If \textit{Y. pestis} can be detected during this quiescent cycle, the ability to predict its re-emergence will be practical. This could lead to novel strategies being implemented that prevent disease prior to epizootics. As the biological relevance of \textit{Y. pestis} being harbored by amoeba has not been established, this proposal aims to establish biological relevance of \textit{Y. pestis} in FLA that we have identified from burrows of black-tailed prairie dogs that have recently experienced plague epizootics. Therefore in a first approach to determine if \textit{Y. pestis} can be harbored in FLA species, soil from burrows in the Cathy Fromme short grass prairie in Northern Colorado where plague epizootics resulting in black-tailed prairie dogs die-offs have very recently been recorded, was investigated for the presence of FLA. We received soil sample collections from our collaborators (Drs Eisen and Montenegro) of the Plague Group at the CDC in Fort Collins, CO. Following standard isolation and enrichment culturing methods, and characterization based on morphology and 18S rRNA sequencing, we have been able to culture a few FLA species including \textit{Hartmanella} and \textit{Acanthamoeba} spp., and have achieved culturing a pure isolate of the \textit{Acanthamoeba} spp. (Fig. 3).

4. Experimental methods and design

The \textit{Y. pestis} KIM5 (33) and isogenic KIM5 \textit{phoP} mutant (28) avirulent strains will be used for the studies outlined below. The \textit{Y. pestis} KIM5 strain contains the T3SS and is genetically more representative of a fully virulent \textit{Y. pestis} strain. Because the \textit{Y. pestis} \textit{phoP} mutant strain (34) is defective in its ability to productively infect \textit{A. castellanii} (Fig. 2) it will be used as a negative control in quantitative intracellular survival studies. The trophozoite life stage is predicted to support infection and re-emergence.

Specific Aim 1: Determine if ecologically relevant burrow \textit{Acanthamoeba} spp. can support intracellular survival and replication of \textit{Y. pestis}

Rationale: \textit{Y. pestis} is expected to enter the soil in rodent burrows in a plague endemic area, from a decomposing carcass of a rodent that has succumbed to plague, or from flea feces (Fig 1). Within soil numerous FLA species are present that likely phagocytose \textit{Y. pestis}. Within amoeba \textit{Y. pestis} is protected from the harsh soil environment (Fig 1). \textit{Acanthamoeba} spp trophozoites have a growing range of 4-27°C (35, 36). This is consistent with extreme lower and upper temperature limits expected in subterranean rodent burrows during seasonal inter-epizootic and epizootic periods (23, 37). These temperature limits will be used to test long term intracellular survival of \textit{Y. pestis}. Similar to \textit{A. castellanii} we have observed that at 4°C temperature, amoeba remain as trophozoites for over a month at least, and do not multiply as rapidly as at ambient temperature, consistent with published findings.

Methodology: Gentamycin protection assays designed to evaluate \textit{Y. pestis} survival and replication will be used to quantify \textit{Y. pestis} survival and replication in naturally occurring FLA. Bacteria will be grown at 25°C consistent with the burrow temperature during epizootics prior to co-culture. Co-cultures will be incubated at both ambient temperature of 25°C and 4°C to investigate the intracellular survival and/or replication at expected epizootic and inter-epizootic periods, respectively. The assay is a modification of our published methods used to determine that \textit{Y. pseudotuberculosis}, and not \textit{Escherichia coli} DH5α survives and replicates in \textit{A. castellanii} trophozoites and cysts (38). \textit{A. castellanii} will be used as a positive control for its ability to phagocytose \textit{Y. pestis}. \textit{Klebsiella pneumoniae} will be used as a negative control as it is utilized as a food source by burrow FLA. At least 3 independent biological replicates of interaction assays will be undertaken and a Student’s T-test will be undertaken to determine significant differences in entry/uptake and efficiency of survival and replication in natural burrow amoeba \textit{Acanthamoeba} for the two \textit{Y. pestis} strains to be tested. **Analysis and alternatives:** \textit{Y. pestis} is expected to survive and replicate in burrow amoeba at ambient co-culture temperatures, and survive but not replicate at 4°C, similarly to \textit{Y. pestis}-\textit{A. castellanii} coculture assays (Fig 2). This will also be similar to the ability of \textit{L. pneumophila} (39, 40) and other bacterial pathogens (4, 41, 42) to survive in environmental FLA. If the burrow \textit{Acanthamoeba} is unable to support survival and replication of \textit{Y. pestis}, we will test the burrow \textit{Hartmanella} FLA species. **Technical alternatives:** Flow cytometry could be used to assess survival and
replication of \textit{Y. pestis} in trophozoites as has been achieved in other studies defining interactions between bacterial pathogens and FLA (4, 27). Overall we expect that this aim will provide biological evidence that \textit{Y. pestis} can colonize environmentally relevant amoeba species.

Specific Aim 2 Determine if the ability of \textit{Y. pestis} to survive long term and/or replicate in amoeba can be recapitulated in a simulated burrow soil environment.

Rationale: During sterile and highly controlled laboratory culture \textit{Y. pestis} is able to survive and replicate in amoeba. However it is not known if a natural soil environment can support prolonged intra-amoebal survival of \textit{Y. pestis}.

Experimental design: The soil collected from rodent burrows (described in preliminary studies) will be used. Temperature (°C) and relative humidity (％RH) will be maintained within the range observed in rodent burrows during epizootic (~25°C; 68％RH) and quiescent plague cycles (4-10°C, 80％RH). To allow fluorescent microscopic detection of \textit{Y. pestis} a green fluorescent protein tagged \textit{Y. pestis} (GFP-\textit{Y. pestis}; shown in Figs 3 and 4) will be grown and seeded in mouse blood at a concentration of that present in a bacteremic mouse (10^8-10^9 cfu/mL). One mL of infected blood will be added to 1g soil. Amoeba will be added to one replicate of soil at ~10^11 trophozoites/g soil to produce a multiplicity of infection of 100, similar to our axenic coculture experiments (Fig 2); the other replicate will serve as a control for bacterial survival in soil lacking FLA. Similarly a soil sample, containing amoeba only, will serve as a control for changes in amoeba numbers in the absence of bacteria. Over a period of two months in which the experimental soil environment will first be incubated at epizootic conditions for two weeks, followed by inter-epizootic conditions for 1 month and then epizootic conditions again for two weeks, soil samples will be collected and processed every 3-4 days to detect changes in bacteria and amoeba numbers as follows: (i) total genomic DNA will be isolated using Mobio Powersoil PowerLyzer® Kits and quantitative real-time PCR of unique target genes encoded on their chromosomes will be undertaken to determine changes in copy numbers of bacteria and amoeba; (iii) as a qualitative determination and for detection of viable bacteria, wetted soil samples will be added to agar wells and \textit{Y. pestis} infected amoeba allowed to proliferate. Fluorescent microscopic analysis of the agar plate has the ability to identify if GFP-\textit{Y. pestis} are present within amoeba. Burrow amoeba was originally isolated from soil using agar plates. Our test experiment using \textit{A. castellanii} and GFP-\textit{Y. pestis} grown axenically, and then seeded on agar plates proves feasibility of identifying intra-amoebal fluorescing \textit{Y. pestis} on agar plates. (Fig 4). This method can be advantageous in detecting low numbers of infected amoeba as these can subsequently be amplified in culture and processed as in Aim 1. Experiments will initially be optimized using \textit{A. castellanii} and tested using burrow amoeba.

Analysis and alternatives: We expect to identify increases or no alteration in bacterial numbers under epizootic conditions ideal for amoeba proliferation. Under inter-epizootic conditions it’s expected that there will be decreases or no alteration in bacterial numbers as conditions should be less favorable for proliferation. However, our hypothesis that amoeba serve as a \textit{Y. pestis} reservoir will still be accepted as long as viable intra-amoebal bacteria are demonstrated at the end of 3 months, irrespective of whether bacterial numbers are altered in either condition.

Overall outcomes: These experiments will provide the basis for specific targeting of amoeba in rodent burrows and for quantitatively defining levels of intra-amoebal bacteria expected in burrows during plague cycles. This is of paramount importance for detecting the \textit{Y. pestis}-amoeba interaction in prairie plague foci in order to predict plague re-emergence in such areas. The ability to predict a plague epizootic could inform which prairie areas are viable for recovery of black-footed ferrets, or implementation of early interventions that prevent disease spread and extinction of prairie dog colonies. This will have the overall impact of reducing risk of disease spread to other susceptible wildlife species e.g. mountain lions or to domestic animals e.g. cats and dogs.

5. **Timeline:** During Year One, Aim 1 will be performed and accomplished. Concurrently, optimization of experiments in Aim 2 will be undertaken. In Year Two final investigation into the dynamics of bacterial survival in amoeba in a burrow soil simulating environment and manuscript preparation and submission will be accomplished.
Morris Animal Foundation
Animal Involvement Justification
(From the proposal guidelines, single-spaced, no page limit)

Morris Animal Foundation (MAF) is dedicated to funding scientifically sound, relevant and humane studies that specifically address the health and well-being of animals. All studies receiving funding must follow MAF’s Health Study Policy for Animals Involved in Research (adopted October 18, 2008), which was written to ensure that each and every animal involved in a MAF funded health study receives excellent, compassionate care throughout the study. MAF shall not fund health studies which require euthanasia as an endpoint or the induction of disease or injury, unless the nature of the disease or condition to be studied is of such significance for improving animal health that such means are justified, and that meaningful information can be obtained in no other way. Furthermore, MAF will not fund any study that induces or allows pain or distress unless such pain or distress can be controlled by appropriate anesthetic, analgesic, tranquilizing drugs, or nursing care. [Click here](#) for the full Health Study Policy.

A. If this study does not involve live animals please indicate here by N/A: N/A

B. Does this study involve biological samples, tissues, etc.? N/A, Mouse blood will be acquired from commercial vendor (Bioreclamation, New York)
 - If yes, describe in detail what samples will be used and where & how they will be (or were) acquired. Note: Morris Animal Foundation reserves the right to request a copy of the Institutional Animal Care and Use Committee (IACUC) application/approval and other relevant applications/approvals (e.g., wildlife permit) covering the original collection of samples, including archived samples. MAF reserves the right to request IACUC (or equivalent) review and approval for any Foundation study regardless of the Institution’s requirements. This would include the use of archived samples as well as clinical trials.

C. If this study involves live animals, succinctly address the following: (please restate the questions and directives).
 1. What species will be studied?
 2. State the status of your IACUC application/approval. All recipients of MAF funding will be required to submit the entire IACUC protocol and document. A copy of the IACUC approval should not be included with the application, but it is required before funding can be awarded.
 3. List the USDA category for pain and distress (B, C, D, E): ______
 - Note: Any study beyond category C will require review by MAF’s Animal Welfare Advisory Board (AWAB). In general MAF does not fund studies beyond category C (category D studies will only be considered if they conform with MAF’s Health Study Policy, category E studies will not be considered).
 4. Does this proposal involve client-owned animals? ______
 - If yes, the protocol for client-owned animals must be approved by the appropriate peer review committee before the project is funded. If this proposal involves client-owned animals, an informed client consent form must be submitted with this proposal. For a suggested list of items to be considered in an informed client consent form, [click here](#).
 5. Explain how animals will be acquired (e.g., client-owned, USDA licensed breeder, institutional “herds” or “colonies”) and verify that the animals are suitable for the study (e.g., have no physiologic, physical or pharmacologic issues that would interfere with results)
 6. How many animals will be used? ______
 - a. Summarize numerical justification
 7. Does this study induce disease, injury, pain or distress in animals? Note: any study requiring the induction of disease, injury, pain, or distress will have an additional evaluation by MAF’s AWAB.

Revised October 2010
If yes,

a. Defend the necessity of experimental design

b. Explain how pain and/or distress will be controlled

c. Justify that no alternative, including clinical studies, can be used to accomplish study objectives and the disease/condition to be studied is of such significance for improving the health of the species.

8. Explain the environment and housing conditions (quality of life) in which the animals will live (address species-appropriate exercise, enrichment, socialization, veterinary care, etc.)

9. What will happen to the animals upon completion of the study?

If adoption, explain the adoption process. Provide assurance that whenever possible and when in the animal’s best interest, investigators shall make companion animals available for adoption for adoption at the end of the study or return the animals to the owner/responsible agency in an environment that promotes animal welfare and excellent quality of life.

10. If euthanasia, provide the following additional information (note: any study requiring euthanasia as an endpoint will have an additional evaluation by a MAF’s AWAB.

 i. Total number that will be euthanized and justification for numbers

 ii. Method of euthanasia

 iii. Justification that no alternatives can be used to accomplish study goal(s) and that the disease/condition to be studied is of such significance for improving the health of the species that a terminal endpoint is deemed necessary.

 iv. Reason for euthanasia in lay language (this wording may be shared with staff, donors and media)

 v. Provide objective criteria for determining when euthanasia is appropriate or necessary (note: Morris Animal Foundation wants assurance that an animal will not be allowed to suffer and that monitoring for pain and suffering is adequate)

Note: Morris Animal Foundation does not consider the use of CO2 alone to be an appropriate method of euthanasia

Please note:

1. If an animal is used in an invasive study, MAF may require that a guarantee is provided, through principal investigator and institutional signatures that the animal will not participate in any future invasive study or procedure

2. MAF does not allow inclusion of ancillary data in MAF funded research that includes animal use protocols not in agreement with our Health Study Policy, even if it is obtained using other funding sources.

3. Morris Animal Foundation considers euthanasia acceptable when an animal develops unanticipated illness or injury that results in pain and suffering that cannot be alleviated with standard veterinary interventions.
VI. Recombinant DNA/Biohazards: Recombinant DNA will not be used in this study. The *Y. pestis* strains used in this study are designated avirulent and will be used at Biosafety Level 2 (BSL2). The BSL2 practices using avirulent *Y. pestis* have been approved by the Washington State University Institutional Biosafety committees.
VII. Facilities and equipment:

Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, WSU

The Paul G. Allen Center for Global Animal Health, opened in 2012, is a 62,000-square-foot state-of-the-art infectious disease research facility designed and equipped to meet today's standards for investigating pathogens and emerging diseases. The facility includes administrative offices and a CDC and USDA certified Biosafety Level 3 (BSL3) laboratory on the first floor, and two floors of BSL2 laboratories, meeting rooms, office space, and open areas to encourage direct interactions among the students, faculty and staff. In addition to individual faculty laboratories, there are common equipment rooms and shared facilities including licensed work sites for bioinformatics.

Laboratory facilities: Dr. Vadyvaloo has an assigned laboratory in the Allen Center. Additional resources and laboratories are available to Dr. Vadyvaloo throughout the College of Veterinary Medicine (CVM) complex. The Allen School and other CVM laboratories are fully equipped for contemporary research in molecular biology, infectious diseases, and immunology. The BSL2 laboratories have been approved by the Institutional Biosafety Committee for pathogen use, recombinant DNA experiments and radioisotope use.

Equipment: The allocated laboratory space is equipped with four 4-ft biological safety cabinets, four CO₂ incubators, various bacterial incubators and shakers for recombinant work in *Escherichia coli* and *Yersinia pestis*, a Thermolyne Locator Jr Plus nitrogen freezer for cryostorage of amoeba cell lines, Thermo Revco -86°C freezers for long term storage of strains and samples, standard DNA, RNA and protein electrophoresis equipment, 2 BioRad C1000Touch PCR cyclers and a CFX96/384 Real Time PCR System, various Eppendorf centrifuges, biospectrophotometer, Agilent Bioanalyzer (RNA/DNA quality analysis) and a Biorad GenePulser Xcell for electroporation, Nanodrop (DNA/RNA quantification), pipettes (single and multi-channel), EVOS fluorescence microscope, spectrophotometer, and heating blocks. Gamma counters, HPLC and FPLC are available nearby. Additional equipment is available for use in shared facilities in the Allen Center including a Leica DM4000 epifluorescence upright microscope with 4 laser lines: (1) Excitation 360/40, emission 470/40 (for DAPI and Hoechst); (2) Excitation 480/40, emission 527/30 (for Alexa 488, FITC, GFP); (3) Excitation 545/40, emission 610/75 (for Alexa 546, Alexa 568, mCherry, DsRed); (4) Excitation 640/30, emission 690/50 (for Cy5, Alexa 647). Also available are TECAN Infinite M1000 fluorescence/luminescence microplate reader, a Millipore guava easyCyte™ HT flow cytometer, a BioRad ChemiDoc™ MP gel imaging system, Sorvall WX Ultra 100 and MTX 150 ultracentrifuges, Sorvall high speed centrifuges, an Illumina MiSeq personal sequencer, Zeiss Primovert microscope for tissue culture, and Lonza 4D-Nuleofector.

Office: The PI has a private 150 sq. ft. office space located next to her research laboratory. Shared office space is also available for technicians, postdocs, and graduate students working in the laboratory.

Computer: Dr. Vadyvaloo has networked computers in her laboratory and office including multiple specialized software packages, and wireless connectivity is available throughout the building.

Additional resources available on the WSU campus

A Leica TCS SP8 X point scanning confocal microscope with 7 laser lines is available in nearby BSL2 lab space in the CVM Department of Integrative Physiology and Neuroscience.

Microscopy and Imaging: The Franchesci Center maintains the full complement of microscopy services and instrumentation. This includes confocal microscopes (BioRad MRC 1024; Zeiss LSM 510), 2 transmission electron microscopes (FEI TEM T20, Philips CM-200), 2 scanning electron microscopes (Hitachi S-570, FEI Quanta 220F) electron microscopes, Fluorescence microscope (Leica) and laser dissection microscope (PALM MicroBeam Laser Dissection Core). All are fitted with imaging instrumentation. The full-set of tissue processing for these microscopy needs are available at the Center. All necessary ancillary equipment, computers for image processing and analysis are maintained for student and faculty use. The center provides project consultation and has a skilled staff to assist students and faculty in a wide range of research projects.

Laboratories in the neighboring *Animal Diseases and Biotechnology Facility* are fully equipped an approved for research in molecular biology, infectious diseases, and radioisotope use, as described above.

40. Tyson JY, Pearce MM, Vargas P, Bagchi S, Mulhern BJ, Cianciotto NP. 2013. Multiple Legionella pneumophila Type II secretion substrates, including a novel protein, contribute to differential
infection of the amoebae *Acanthamoeba castellanii*, *Hartmannella vermiformis*, and *Naegleria lovaniensis*. Infect Immun **81**:1399-1410.

IX. PROPOSAL BUDGET

<table>
<thead>
<tr>
<th>Category</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Principal investigator (Viveka Vadyvaloo, PhD)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Co-investigator #1 (Javier Benavides-Montano, DVM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Technician Salary (40%) Fringe benefits (33.2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Salaries & Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies & Expenses:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Consumables (plastic ware, tips, tubes, tissue culture flasks, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Chemicals and media components (glucose, magnesium chloride, brain-heart infusion broth, sodium chloride, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Molecular reagents (Mobio Powersoil Kit, qPCR reagents, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Publication/Page charges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Annual Usage Fee for the Microscopy facility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Microscopy reagents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide justification in the designated section.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Supplies & Expenses:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Use & Care:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Purchase:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Per diem:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Animal Care:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal of All Categories:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum of 8% - Indirect Costs:**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total Requested from MAF:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
X. Itemized Budget Justification

Salaries and benefits:
Principal Investigator (Viveka Vadyvaloo, PhD)
Dr. Vadyvaloo has >9 years’ experience working on *Y. pestis*. As PI, she will coordinate, supervise and participate in generating experimental data for the proposed work. She will oversee and advise all technical aspects of the research outlined in the specific aims. Dr. Vadyvaloo will be responsible for data analysis and interpretation, as well as writing and submitting reports and manuscripts for publication. Dr. Vadyvaloo will not receive any salary or benefits.

Co-Investigator (Javier Benavides-Montaño, DVM)
Mr. Benavides-Montaño has 2 years’ experience with *Y. pestis* in amoeba and is responsible for generating the preliminary data presented in this proposal. Under the supervision of Dr. Vadyvaloo, he will assist in conducting the experiments described in both aims, will participate in the data analysis and interpretation, and manuscript preparation. No salary or benefits are requested.

Laboratory technician (To be determined)
Under the direct supervision of Dr. Vadyvaloo the technician will assist in conducting the experiments outlined in Aims 1 and 2, and will provide support to Mr. Benavides-Montaño on all experimental aspects of the project. The technician will also maintain amoeba and bacterial culture stocks, prepare media, and oversee general laboratory BSL-2 protocol and maintenance. Salary and benefits are requested to cover the cost of the technician at 40% effort, for a total cost of $x.

Supplies and expenses:
A total of $x is requested to cover the supplies and expenses associated with the completion of the specific aims in this proposal.

1. **Consumables and plastic-ware**: tissue culture flasks, tubes, pipets, pipet tips, petri plates etc. $x is requested over two years for laboratory consumables and plastic-ware expenses.

2. **Chemicals and reagents**: chemicals to make media (NaCl, MgCl, glucose, vitamins, minerals etc.), brain heart infusion, etc. $x is requested to cover the costs of chemicals and reagents over the two years.

3. **Molecular biology reagents**: Mobio Powerlyzer® Powersoil® soil DNA extraction kit, primers and probes for qRT-PCR, qRT-PCR reagents, DNA stain, DNA loading buffer. $x is requested to purchase the necessary molecular biology reagents.

4. **Publication and page charges**: $x is requested in year 2 to defray publication expenses.

5. **Use of the microscopy (electron) facility**: $x per year is requested to pay the annual usage fee of the Franceschi Microscopy & Imaging Center.

6. **Microscopy reagents**: (uranyl acetate, electron grids, cacodylate buffer, etc.) $x is requested to cover the cost of microscopy reagents over the two year period.
XI. Other Support

Current support:

Project number: [redacted]
Source: College of Veterinary Medicine Washington State University Intramural Grant program

Overlap: The above funded project has conceptual and scientific overlap with the currently proposed study. In terms of % effort and resources there is no overlap because the latter is focused on understanding survival and replication of *Y. pestis* in ecologically relevant amoeba that have been identified by studies that have been accomplished from the currently funded project.

Pending support:

Project number: [redacted]

Overlap: No overlap exists between the above study and the currently proposed study.
XII. Prior MAF Support during the last three years
None
BIOGRAPHICAL DATA

NAME: Viveka Vadyvaloo

POSITION/ROLE ON PROJECT: Principal Investigator

CURRENT POSITION: Assistant Professor, Paul G. Allen School for Global Animal Health
Washington State University, PO Box 647090, Pullman, WA 99164-7090

EDUCATION/TRAINING

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (If applicable)</th>
<th>Completion Date MM/YYYY</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Durban-Westville, Durban, South Africa</td>
<td>BS</td>
<td>12/1995</td>
<td>Microbiology, Human Physiology</td>
</tr>
<tr>
<td>University of Kwazulu-Natal, Pietermaritzburg, South Africa</td>
<td>MS</td>
<td>12/1999</td>
<td>Microbial genetics</td>
</tr>
<tr>
<td>University of Stellenbosch, Stellenbosch, South Africa</td>
<td>PhD</td>
<td>06/2003</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Howard Hughes Medical Institute at UCLA, Los Angeles, California</td>
<td>Postdoctoral Fellow</td>
<td>08/2004</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>NIH/NIAID/ Rocky Mountain Laboratories, Hamilton, Montana</td>
<td>Postdoctoral Fellow</td>
<td>09/2005</td>
<td>Bacterial pathogenesis</td>
</tr>
<tr>
<td>NIH/NIAID/Rocky Mountain Laboratories, Hamilton, Montana</td>
<td>Postdoctoral Fellow</td>
<td>09/2008</td>
<td>Vector-borne disease; plague</td>
</tr>
</tbody>
</table>

Positions and Honors

Positions and Employment

2009 - 2010 Research Assistant Professor, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA

2010 - present Assistant Professor, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA

Other Experience and Professional Memberships

2003 - Member, American Society of Microbiology
2010 - Member, North West Regional Center of Excellence
2011 - Member, Entomological Society of America

Honors

1997 AECI MS Fellowship, (AECI/CSIR – South Africa)
2000 Prestigious Equity PhD Fellowship, National Research Foundation of South Africa
2014 NSF ADVANCE at WSU External Mentor Program Award, NSF/WSU
2014 International Travel Award, Washington State University
Selected Peer-Reviewed Publications

BIOGRAPHICAL DATA

NAME: Javier Antonio Benavides Montaño

POSITION/ROLE ON PROJECT: Co-Investigator

CURRENT POSITION: PhD Student, Paul G. Allen School for Global Animal Health
Washington State University, PO Box 647090, Pullman, WA 99164-7090

EDUCATION/TRAINING

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>Year of Graduation</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universidad de Caldas, Manizales, Colombia</td>
<td>BS</td>
<td>1999</td>
<td>Veterinary Medicine and Animal Production Science</td>
</tr>
<tr>
<td>University of Manizales, Caldas, Colombia</td>
<td>M.Ed</td>
<td>2005</td>
<td>Education and University Teaching</td>
</tr>
<tr>
<td>Federal University of Viçosa – Brazil</td>
<td>MSc</td>
<td>2006</td>
<td>Veterinary Medicine</td>
</tr>
</tbody>
</table>

Positions and Honors

Positions and Employment

2007-present Award Academy Excellence I – 07, Faculty of Agriculture Science (Palmira), National University of Colombia.

2011-present Fulbright Scholar, Washington State University, Pullman, WA, USA

Honors

2010 Best Research Award. XXXVII Congreso Sociedad Colombiana de Entomologia (SOCOLEN), Bogota, July 2010.

Selected Peer-Reviewed Publications (English language)

I. Title and Abstract:

Title: Integrated metabolomic and genomic approach to metabolic variation across horse breeds

Rationale: Equine Metabolic Syndrome (EMS) is defined by a clustering of clinical signs, namely hyperinsulinemia, insulin resistance and adiposity, which predispose horses to the development of laminitis. Certain breeds appear to be more susceptible to EMS, while other breeds seem to be at lower risk. Genetic selection in horses has resulted in metabolic and athletic phenotypes that allowed horses to efficiently perform different types of work. These underlying metabolically efficient, or “thrifty” alleles, in particular those that regulate energy intake, storage and use, coupled with changes in equine husbandry practices in recent times, including dense high caloric feed and limited exercise, may explain much of the increasing prevalence of equine metabolic disease phenotypes in modern environments.

Hypothesis/Objectives: We hypothesize that breed differences in key metabolic phenotypes are due to high frequencies of alleles that modify metabolic traits. Our objectives are to 1) further dissect the metabolic differences between breeds at the molecular level using total serum metabolite profiling; and 2) use these breed-specific molecular metabolic profiles to identify candidate genes underlying breed metabolic differences.

Study Design: In Objective 1 serum metabolite profiles will be analyzed before and after an oral sugar test in 274 horses from 5 breeds with distinct metabolic phenotypes. These data will be used to 1) identify the metabolites and metabolic pathways that are significantly different between breeds using functional annotation and mapping of metabolites to known pathways, pathway and metabolite set enrichment analysis, network analysis, and pathway activity profiling; and 2) to correlate the metabolite/pathway differences with the previously identified breed differences in key hormonal and biochemical measurements. In Objective 2 candidate genes responsible for metabolic differences between breeds will be identified by using high-density SNP genotype data to locate genomic regions and specific haplotypes that are highly differentiated between breeds. Metabolites and metabolic pathways that are significantly different between breeds will then be used to provide context for narrowing the focus to specific candidate genes within these genomic regions.

Preliminary Data: Our data demonstrate significant differences among Morgans, Arabians, Welsh ponies, Tennessee Walking Horses and Quarter Horses in EMS-defining metabolic traits (e.g. insulin dynamics, lipid metabolism, adipokines) that mirror EMS risk. We have also demonstrated the use of SNP genotype data to identify regions of breed differentiation/selection across a wide breed panel, and across Quarter Horses and Welsh Ponies, and provided examples in the GYS1 and MSTN genes that selection for certain performance traits results in near-fixation of alleles that alter energy metabolism. Finally, we have demonstrated the potential for serum metabolomic data to lead to insight into the metabolic differences between horses and clinical phenotypes.

Expected Results: We expect to detect major breed differences in metabolites/metabolic pathways that are correlated to previously identified biochemical and hormonal differences. We also expect to identify and prioritize candidate genes within genomic regions of interest that influence a spectrum of metabolic traits, particularly the susceptibility to metabolic syndrome.

Budget and Timeline: Approximately one year is required to achieve each objective.

Potential Impact for Animal Health: Elucidating the evolution of the genetic basis of metabolic efficiency and metabolic syndrome is a novel, unexploited approach to the study of the genetic basis of obesity, energy dysregulation and EMS. This project will provide novel insights into disease biology, allowing the identification of new therapeutic targets, and increasing our understanding of the pathophysiology of EMS and its associated clinical features. Moreover, the identification of genes underlying the EMS phenotype will also directly impact equine health by allowing for the development of genetic tests to identify horses at risk for the development of obesity and laminitis prior to the onset of clinical disease.